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MOTIVATION
The idea for this book grew out of discussions between the statistics faculty and the
engineering faculty at the Colorado School of Mines regarding our introductory sta-
tistics course for engineers. Our engineering faculty felt that the students needed 
substantial coverage of propagation of error, as well as more emphasis on model-
fitting skills. The statistics faculty believed that students needed to become more 
aware of some important practical statistical issues such as the checking of model 
assumptions and the use of simulation.
	 My view is that an introductory statistics text for students in engineering and sci-
ence should offer all these topics in some depth. In addition, it should be flexible 
enough to allow for a variety of choices to be made regarding coverage, because there 
are many different ways to design a successful introductory statistics course. Finally, 
it should provide examples that present important ideas in realistic settings. Accord-
ingly, the book has the following features:

•	 The book is flexible in its presentation of probability, allowing instructors wide 
latitude in choosing the depth and extent of their coverage of this topic.

•	 The book contains many examples that feature real, contemporary data sets, both 
to motivate students and to show connections to industry and scientific research.

•	 The book contains many examples of computer output and exercises suitable for 
solving with computer software.

•	 The book provides extensive coverage of propagation of error.

•	 The book presents a solid introduction to simulation methods and the bootstrap, 
including applications to verifying normality assumptions, computing probabilities, 
estimating bias, computing confidence intervals, and testing hypotheses.

•	 The book provides more extensive coverage of linear model diagnostic procedures 
than is found in most introductory texts. This includes material on examination of 
residual plots, transformations of variables, and principles of variable selection in 
multivariate models.

•	 The book covers the standard introductory topics, including descriptive statistics, 
probability, confidence intervals, hypothesis tests, linear regression, factorial exper-
iments, and statistical quality control.

MATHEMATICAL LEVEL
Most of the book will be mathematically accessible to those whose background 
includes one semester of calculus. The exceptions are multivariate propagation of 
error, which requires partial derivatives, and joint probability distributions, which 
require multiple integration. These topics may be skipped on first reading, if desired.

PREFACE
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COMPUTER USE
Over the past 40 years, the development of fast and cheap computing has revolution-
ized statistical practice; indeed, this is one of the main reasons that statistical methods 
have been penetrating ever more deeply into scientific work. Scientists and engineers 
today must not only be adept with computer software packages, they must also have 
the skill to draw conclusions from computer output and to state those conclusions in 
words. Accordingly, the book contains exercises and examples that involve interpret-
ing, as well as generating, computer output, especially in the chapters on linear mod-
els and factorial experiments. Many statistical software packages are available for 
instructors who wish to integrate their use into their courses, and this book can be 
used effectively with any of these packages. 
	 The modern availability of computers and statistical software has produced an 
important educational benefit as well, by making simulation methods accessible to 
introductory students. Simulation makes the fundamental principles of statistics 
come alive. The material on simulation presented here is designed to reinforce 
some basic statistical ideas, and to introduce students to some of the uses of this 
powerful tool.

CONTENT
Chapter 1 covers sampling and descriptive statistics. The reason that statistical meth-
ods work is that samples, when properly drawn, are likely to resemble their popula-
tions. Therefore Chapter 1 begins by describing some ways to draw valid samples. 
The second part of the chapter discusses descriptive statistics.
	 Chapter 2 is about probability. There is a wide divergence in preferences of 
instructors regarding how much and how deeply to cover this subject. Accordingly, 
I have tried to make this chapter as flexible as possible. The major results are 
derived from axioms, with proofs given for most of them. This should enable 
instructors to take a mathematically rigorous approach. On the other hand, I have 
attempted to illustrate each result with an example or two, in a scientific context 
where possible, that is designed to present the intuition behind the result. Instruc-
tors who prefer a more informal approach may therefore focus on the examples 
rather than the proofs.
	 Chapter 3 covers propagation of error, which is sometimes called “error analysis” 
or, by statisticians, “the delta method.” The coverage is more extensive than in most 
texts, but because the topic is so important to many engineers I thought it was worth-
while. The presentation is designed to enable instructors to adjust the amount of 
coverage to fit the needs of of the course. In particular, Sections 3.2 through 3.4 can 
be omitted without loss of continuity.
	 Chapter 4 presents many of the probability distribution functions commonly used 
in practice. Point estimation, probability plots and the Central Limit Theorem are also 
covered. The final section introduces simulation methods to assess normality assump-
tions, compute probabilities, and estimate bias.



	 Chapters 5 and 6 cover confidence intervals and hypothesis testing, respectively. 
The P-value approach to hypothesis testing is emphasized, but fixed-level testing and 
power calculations are also covered. The multiple testing problem is covered in some 
depth. Simulation methods to compute confidence intervals and to test hypotheses are 
introduced as well.
	 Chapter 7 covers correlation and simple linear regression. I have worked hard to 
emphasize that linear models are appropriate only when the relationship between the 
variables is linear. This point is all the more important since it is often overlooked in 
practice by engineers and scientists (not to mention statisticians). It is not hard to find 
in the scientific literature straight-line fits and correlation coefficient summaries for 
plots that show obvious curvature or for which the slope of the line is determined by 
a few influential points. Therefore this chapter includes a lengthy section on checking 
model assumptions and transforming variables.
	 Chapter 8 covers multiple regression. Model selection methods are given particular 
emphasis, because choosing the variables to include in a model is an essential step in 
many real-life analyses. The topic of confounding is given careful treatment as well.
	 Chapter 9 discusses some commonly used experimental designs and the methods 
by which their data are analyzed. One-way and two-way analysis of variance methods, 
along with randomized complete block designs and 2p factorial designs, are covered 
fairly extensively.
	 Chapter 10 presents the topic of statistical quality control, discussing control charts, 
CUSUM charts, and process capability; and concluding with a brief discussion of 
sixsigma quality.

NEW FOR THIS EDITION
The fifth edition of this book is intended to extend the strengths of the fourth. Some
of the changes are:

• 	A large number of new exercises have been included, many of which involve real 
data from recently published sources.

• 	Many examples have been updated.

• 	Material on resistance to outliers has been added to Chapter 1. 

• 	Chapter 7 now contains material on interpreting the slope of the least-squares line.

•	 The exposition has been improved in a number of places.

RECOMMENDED COVERAGE
The book contains enough material for a year-long course. For a one-semester course, 
there are a number of options. In our three-hour course at the Colorado School of 
Mines, we cover all of the first four chapters, except for joint distributions, the more 
theoretical aspects of point estimation, and the exponential, gamma, and Weibull 
distributions. We then cover the material on confidence intervals and hypothesis testing 
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in Chapters 5 and 6, going quickly over the two-sample methods and power calcula-
tions and omitting distribution-free methods and the chi-square and F tests. We finish 
by covering as much of the material on correlation and simple linear regression in 
Chapter 7 as time permits.
	 A course with a somewhat different emphasis can be fashioned by including more 
material on probability, spending more time on two-sample methods and power, and 
reducing coverage of propagation of error, simulation, or regression. Many other 
options are available; for example, one may choose to include material on factorial 
experiments in place of some of the preceding topics. 

INSTRUCTOR RESOURCES
The following resources are available on the book website www.mhhe.com/navidi.

• 	Solutions Manual 

• 	PowerPoint Lecture Notes 

• 	Suggested Syllabi 

ACKNOWLEDGMENTS
I am indebted to many people for contributions at every stage of development. I 
received valuable suggestions from my colleagues Barbara Moskal, Gus Greivel, Ashlyn 
Munson, and Melissa Laeser at the Colorado School of Mines. Mike Colagrosso 
developed some excellent applets, and Lesley Strawderman developed PowerPoint 
slides to supplement the text. I am particularly grateful to Jack Miller of the University 
of Michigan, who has corrected many errors and made many valuable suggestions for 
improvement.
	 The staff at McGraw-Hill has been extremely capable and supportive. In particular, 
I would like to express my thanks to Product Developer Tina Bower, Content Project 
Manager Jeni McAtee, and Senior Portfolio Manager Thomas Scaife for their patience 
and guidance in the preparation of this edition.

William Navidi
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Chapter 1
Sampling and
Descriptive Statistics

Introduction

The collection and analysis of data are fundamental to science and engineering. Sci-

entists discover the principles that govern the physical world, and engineers learn how

to design important new products and processes, by analyzing data collected in scien-

tific experiments. A major difficulty with scientific data is that they are subject to ran-

dom variation, or uncertainty. That is, when scientific measurements are repeated, they

come out somewhat differently each time. This poses a problem: How can one draw

conclusions from the results of an experiment when those results could have come out

differently? To address this question, a knowledge of statistics is essential. Statistics is

the field of study concerned with the collection, analysis, and interpretation of uncertain

data. The methods of statistics allow scientists and engineers to design valid experiments

and to draw reliable conclusions from the data they produce.

Although our emphasis in this book is on the applications of statistics to science and

engineering, it is worth mentioning that the analysis and interpretation of data

are playing an ever-increasing role in all aspects of modern life. For better or worse,

huge amounts of data are collected about our opinions and our lifestyles, for purposes

ranging from the creation of more effective marketing campaigns to the development of

social policies designed to improve our way of life. On almost any given day, newspa-

per articles are published that purport to explain social or economic trends through the

analysis of data. A basic knowledge of statistics is therefore necessary not only to be an

effective scientist or engineer, but also to be a well-informed member of society.

The Basic Idea
The basic idea behind all statistical methods of data analysis is to make inferences about

a population by studying a relatively small sample chosen from it. As an illustration,

1
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consider a machine that makes steel rods for use in optical storage devices. The specifi-

cation for the diameter of the rods is 0.45 ± 0.02 cm. During the last hour, the machine

has made 1000 rods. The quality engineer wants to know approximately how many of

these rods meet the specification. He does not have time to measure all 1000 rods. So

he draws a random sample of 50 rods, measures them, and finds that 46 of them (92%)

meet the diameter specification. Now, it is unlikely that the sample of 50 rods repre-

sents the population of 1000 perfectly. The proportion of good rods in the population is

likely to differ somewhat from the sample proportion of 92%. What the engineer needs

to know is just how large that difference is likely to be. For example, is it plausible that

the population percentage could be as high as 95%? 98%? As low as 90%? 85%?

Here are some specific questions that the engineer might need to answer on the basis

of these sample data:

1. The engineer needs to compute a rough estimate of the likely size of the difference

between the sample proportion and the population proportion. How large is a

typical difference for this kind of sample?

2. The quality engineer needs to note in a logbook the percentage of acceptable rods

manufactured in the last hour. Having observed that 92% of the sample rods were

good, he will indicate the percentage of acceptable rods in the population as an

interval of the form 92% ± x%, where x is a number calculated to provide

reasonable certainty that the true population percentage is in the interval. How

should x be calculated?

3. The engineer wants to be fairly certain that the percentage of good rods is at least

90%; otherwise he will shut down the process for recalibration. How certain can

he be that at least 90% of the 1000 rods are good?

Much of this book is devoted to addressing questions like these. The first of these ques-

tions requires the computation of a standard deviation, which we will discuss in

Chapters 2 and 4. The second question requires the construction of a confidence in-
terval, which we will learn about in Chapter 5. The third calls for a hypothesis test,
which we will study in Chapter 6.

The remaining chapters in the book cover other important topics. For example, the

engineer in our example may want to know how the amount of carbon in the steel rods

is related to their tensile strength. Issues like this can be addressed with the methods

of correlation and regression, which are covered in Chapters 7 and 8. It may also be

important to determine how to adjust the manufacturing process with regard to several

factors, in order to produce optimal results. This requires the design of factorial exper-
iments, which are discussed in Chapter 9. Finally, the engineer will need to develop a

plan for monitoring the quality of the product manufactured by the process. Chapter 10

covers the topic of statistical quality control, in which statistical methods are used to

maintain quality in an industrial setting.

The topics listed here concern methods of drawing conclusions from data. These

methods form the field of inferential statistics. Before we discuss these topics, we must

first learn more about methods of collecting data and of summarizing clearly the basic

information they contain. These are the topics of sampling and descriptive statistics,

and they are covered in the rest of this chapter.
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1.1 Sampling

As mentioned, statistical methods are based on the idea of analyzing a sample drawn

from a population. For this idea to work, the sample must be chosen in an appropri-

ate way. For example, let us say that we wished to study the heights of students at the

Colorado School of Mines by measuring a sample of 100 students. How should we

choose the 100 students to measure? Some methods are obviously bad. For example,

choosing the students from the rosters of the football and basketball teams would un-

doubtedly result in a sample that would fail to represent the height distribution of the

population of students. You might think that it would be reasonable to use some conve-

niently obtained sample, for example, all students living in a certain dorm or all students

enrolled in engineering statistics. After all, there is no reason to think that the heights

of these students would tend to differ from the heights of students in general. Samples

like this are not ideal, however, because they can turn out to be misleading in ways that

are not anticipated. The best sampling methods involve random sampling. There are

many different random sampling methods, the most basic of which is simple random
sampling.

To understand the nature of a simple random sample, think of a lottery. Imagine

that 10,000 lottery tickets have been sold and that 5 winners are to be chosen. What is

the fairest way to choose the winners? The fairest way is to put the 10,000 tickets in a

drum, mix them thoroughly, and then reach in and one by one draw 5 tickets out. These

5 winning tickets are a simple random sample from the population of 10,000 lottery

tickets. Each ticket is equally likely to be one of the 5 tickets drawn. More importantly,

each collection of 5 tickets that can be formed from the 10,000 is equally likely to be the

group of 5 that is drawn. It is this idea that forms the basis for the definition of a simple

random sample.

Summary

■ A population is the entire collection of objects or outcomes about which

information is sought.

■ A sample is a subset of a population, containing the objects or outcomes

that are actually observed.

■ A simple random sample of size n is a sample chosen by a method in

which each collection of n population items is equally likely to make up

the sample, just as in a lottery.

Since a simple random sample is analogous to a lottery, it can often be drawn by the

same method now used in many lotteries: with a computer random number generator.

Suppose there are N items in the population. One assigns to each item in the popula-

tion an integer between 1 and N. Then one generates a list of random integers between

1 and N and chooses the corresponding population items to make up the simple

random sample.
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Example
1.1 A physical education professor wants to study the physical fitness levels of students

at her university. There are 20,000 students enrolled at the university, and she wants

to draw a sample of size 100 to take a physical fitness test. She obtains a list of all

20,000 students, numbered from 1 to 20,000. She uses a computer random number

generator to generate 100 random integers between 1 and 20,000 and then invites

the 100 students corresponding to those numbers to participate in the study. Is this a

simple random sample?

Solution
Yes, this is a simple random sample. Note that it is analogous to a lottery in which

each student has a ticket and 100 tickets are drawn.

Example
1.2 A quality engineer wants to inspect rolls of wallpaper in order to obtain information

on the rate at which flaws in the printing are occurring. She decides to draw a sample

of 50 rolls of wallpaper from a day’s production. Each hour for 5 hours, she takes

the 10 most recently produced rolls and counts the number of flaws on each. Is this a

simple random sample?

Solution
No. Not every subset of 50 rolls of wallpaper is equally likely to make up the sample.

To construct a simple random sample, the engineer would need to assign a number

to each roll produced during the day and then generate random numbers to determine

which rolls make up the sample.

In some cases, it is difficult or impossible to draw a sample in a truly random way.

In these cases, the best one can do is to sample items by some convenient method. For

example, imagine that a construction engineer has just received a shipment of 1000 con-

crete blocks, each weighing approximately 50 pounds. The blocks have been delivered

in a large pile. The engineer wishes to investigate the crushing strength of the blocks

by measuring the strengths in a sample of 10 blocks. To draw a simple random sample

would require removing blocks from the center and bottom of the pile, which might be

quite difficult. For this reason, the engineer might construct a sample simply by taking

10 blocks off the top of the pile. A sample like this is called a sample of convenience.

Definition
A sample of convenience is a sample that is obtained in some convenient way,

and not drawn by a well-defined random method.

The big problem with samples of convenience is that they may differ systematically

in some way from the population. For this reason samples of convenience should not

be used, except in situations where it is not feasible to draw a random sample. When
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it is necessary to take a sample of convenience, it is important to think carefully about

all the ways in which the sample might differ systematically from the population. If it

is reasonable to believe that no important systematic difference exists, then it may be

acceptable to treat the sample of convenience as if it were a simple random sample.

With regard to the concrete blocks, if the engineer is confident that the blocks on the top

of the pile do not differ systematically in any important way from the rest, then he may

treat the sample of convenience as a simple random sample. If, however, it is possible

that blocks in different parts of the pile may have been made from different batches of

mix or may have different curing times or temperatures, a sample of convenience could

give misleading results.

Some people think that a simple random sample is guaranteed to reflect its popu-

lation perfectly. This is not true. Simple random samples always differ from their pop-

ulations in some ways, and occasionally may be substantially different. Two different

samples from the same population will differ from each other as well. This phenomenon

is known as sampling variation. Sampling variation is one of the reasons that scientific

experiments produce somewhat different results when repeated, even when the condi-

tions appear to be identical.

Example
1.3 A quality inspector draws a simple random sample of 40 bolts from a large ship-

ment and measures the length of each. He finds that 34 of them, or 85%, meet a

length specification. He concludes that exactly 85% of the bolts in the shipment meet

the specification. The inspector’s supervisor concludes that the proportion of good

bolts is likely to be close to, but not exactly equal to, 85%. Which conclusion is

appropriate?

Solution
Because of sampling variation, simple random samples don’t reflect the population

perfectly. They are often fairly close, however. It is therefore appropriate to infer that

the proportion of good bolts in the lot is likely to be close to the sample proportion,

which is 85%. It is not likely that the population proportion is equal to 85%, however.

Example
1.4 Continuing Example 1.3, another inspector repeats the study with a different simple

random sample of 40 bolts. She finds that 36 of them, or 90%, are good. The first

inspector claims that she must have done something wrong, since his results showed

that 85%, not 90%, of bolts are good. Is he right?

Solution
No, he is not right. This is sampling variation at work. Two different samples from

the same population will differ from each other and from the population.

Since simple random samples don’t reflect their populations perfectly, why is it im-

portant that sampling be done at random? The benefit of a simple random sample is

that there is no systematic mechanism tending to make the sample unrepresentative.
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The differences between the sample and its population are due entirely to random varia-

tion. Since the mathematical theory of random variation is well understood, we can use

mathematical models to study the relationship between simple random samples and their

populations. For a sample not chosen at random, there is generally no theory available to

describe the mechanisms that caused the sample to differ from its population. Therefore,

nonrandom samples are often difficult to analyze reliably.

In Examples 1.1 to 1.4, the populations consisted of actual physical objects—the

students at a university, the concrete blocks in a pile, the bolts in a shipment. Such pop-

ulations are called tangible populations. Tangible populations are always finite. After

an item is sampled, the population size decreases by 1. In principle, one could in some

cases return the sampled item to the population, with a chance to sample it again, but

this is rarely done in practice.

Engineering data are often produced by measurements made in the course of a sci-

entific experiment, rather than by sampling from a tangible population. To take a simple

example, imagine that an engineer measures the length of a rod five times, being as

careful as possible to take the measurements under identical conditions. No matter how

carefully the measurements are made, they will differ somewhat from one another, be-

cause of variation in the measurement process that cannot be controlled or predicted. It

turns out that it is often appropriate to consider data like these to be a simple random

sample from a population. The population, in these cases, consists of all the values that

might possibly have been observed. Such a population is called a conceptual popula-
tion, since it does not consist of actual objects.

A simple random sample may consist of values obtained from a process under

identical experimental conditions. In this case, the sample comes from a pop-

ulation that consists of all the values that might possibly have been observed.

Such a population is called a conceptual population.

Example 1.5 involves a conceptual population.

Example
1.5 A geologist weighs a rock several times on a sensitive scale. Each time, the scale gives

a slightly different reading. Under what conditions can these readings be thought of

as a simple random sample? What is the population?

Solution
If the physical characteristics of the scale remain the same for each weighing, so

that the measurements are made under identical conditions, then the readings may be

considered to be a simple random sample. The population is conceptual. It consists

of all the readings that the scale could in principle produce.

Note that in Example 1.5, it is the physical characteristics of the measurement pro-

cess that determine whether the data are a simple random sample. In general, when
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deciding whether a set of data may be considered to be a simple random sample, it is

necessary to have some understanding of the process that generated the data. Statistical

methods can sometimes help, especially when the sample is large, but knowledge of the

mechanism that produced the data is more important.

Example
1.6 A new chemical process has been designed that is supposed to produce a higher yield

of a certain chemical than does an old process. To study the yield of this process, we

run it 50 times and record the 50 yields. Under what conditions might it be reasonable

to treat this as a simple random sample? Describe some conditions under which it

might not be appropriate to treat this as a simple random sample.

Solution
To answer this, we must first specify the population. The population is conceptual

and consists of the set of all yields that will result from this process as many times as

it will ever be run. What we have done is to sample the first 50 yields of the process.

If, and only if, we are confident that the first 50 yields are generated under identical

conditions, and that they do not differ in any systematic way from the yields of future

runs, then we may treat them as a simple random sample.

Be cautious, however. There are many conditions under which the 50 yields could

fail to be a simple random sample. For example, with chemical processes, it is some-

times the case that runs with higher yields tend to be followed by runs with lower

yields, and vice versa. Sometimes yields tend to increase over time, as process engi-

neers learn from experience how to run the process more efficiently. In these cases, the

yields are not being generated under identical conditions and would not be a simple

random sample.

Example 1.6 shows once again that a good knowledge of the nature of the process

under consideration is important in deciding whether data may be considered to be a

simple random sample. Statistical methods can sometimes be used to show that a given

data set is not a simple random sample. For example, sometimes experimental conditions

gradually change over time. A simple but effective method to detect this condition is to

plot the observations in the order they were taken. A simple random sample should show

no obvious pattern or trend.

Figure 1.1 (page 8) presents plots of three samples in the order they were taken.

The plot in Figure 1.1a shows an oscillatory pattern. The plot in Figure 1.1b shows an

increasing trend. Neither of these samples should be treated as a simple random sample.

The plot in Figure 1.1c does not appear to show any obvious pattern or trend. It might

be appropriate to treat these data as a simple random sample. However, before making

that decision, it is still important to think about the process that produced the data, since

there may be concerns that don’t show up in the plot (see Example 1.7).

Sometimes the question as to whether a data set is a simple random sample depends

on the population under consideration. This is one case in which a plot can look good,

yet the data are not a simple random sample. Example 1.7 provides an illustration.
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FIGURE 1.1 Three plots of observed values versus the order in which they were made. (a) The values show a definite

pattern over time. This is not a simple random sample. (b) The values show a trend over time. This is not a simple random

sample. (c) The values do not show a pattern or trend. It may be appropriate to treat these data as a simple random sample.

Example
1.7 A new chemical process is run 10 times each morning for five consecutive mornings.

A plot of yields in the order they are run does not exhibit any obvious pattern or trend.

If the new process is put into production, it will be run 10 hours each day, from 7 A.M.

until 5 P.M. Is it reasonable to consider the 50 yields to be a simple random sample?

What if the process will always be run in the morning?

Solution
Since the intention is to run the new process in both the morning and the afternoon,

the population consists of all the yields that would ever be observed, including both

morning and afternoon runs. The sample is drawn only from that portion of the popu-

lation that consists of morning runs, and thus it is not a simple random sample. There

are many things that could go wrong if this is used as a simple random sample. For

example, ambient temperatures may differ between morning and afternoon, which

could affect yields.

If the process will be run only in the morning, then the population consists only

of morning runs. Since the sample does not exhibit any obvious pattern or trend, it

might well be appropriate to consider it to be a simple random sample.

Independence
The items in a sample are said to be independent if knowing the values of some of

them does not help to predict the values of the others. With a finite, tangible population,

the items in a simple random sample are not strictly independent, because as each item

is drawn, the population changes. This change can be substantial when the population

is small. However, when the population is very large, this change is negligible and the

items can be treated as if they were independent.
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To illustrate this idea, imagine that we draw a simple random sample of 2 items

from the population

0 0 1 1

For the first draw, the numbers 0 and 1 are equally likely. But the value of the second

item is clearly influenced by the first; if the first is 0, the second is more likely to be 1,

and vice versa. Thus the sampled items are dependent. Now assume we draw a sample

of size 2 from this population:

0 ’sOne million 1 ’sOne million

Again on the first draw, the numbers 0 and 1 are equally likely. But unlike the previous

example, these two values remain almost equally likely on the second draw as well, no

matter what happens on the first draw. With the large population, the sample items are

for all practical purposes independent.

It is reasonable to wonder how large a population must be in order that the items in

a simple random sample may be treated as independent. A rule of thumb is that when

sampling from a finite population, the items may be treated as independent so long as

the sample contains 5% or less of the population.

Interestingly, it is possible to make a population behave as though it were infinitely

large, by replacing each item after it is sampled. This method is called sampling with
replacement. With this method, the population is exactly the same on every draw and

the sampled items are truly independent.

With a conceptual population, we require that the sample items be produced under

identical experimental conditions. In particular, then, no sample value may influence the

conditions under which the others are produced. Therefore, the items in a simple random

sample from a conceptual population may be treated as independent. We may think of a

conceptual population as being infinite, or equivalently, that the items are sampled with

replacement.

Summary

■ The items in a sample are independent if knowing the values of some of

the items does not help to predict the values of the others.

■ Items in a simple random sample may be treated as independent in many

cases encountered in practice. The exception occurs when the population

is finite and the sample consists of a substantial fraction (more than 5%) of

the population.




